
Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science

National Curriculum Key stage 4

All pupils must have the opportunity to study aspects of information technology and computer science at sufficient depth to allow them to progress to

higher levels of study or to a professional career.

All pupils should be taught to:

● develop their capability, creativity and knowledge in computer science, digital media and information technology

● develop and apply their analytic, problem-solving, design, and computational thinking skills

● understand how changes in technology affect safety, including new ways to protect their online privacy and identity, and how to identify and

report a range of concerns.

AQA GCSE Computer Science Aims and learning outcomes

● Courses based on this specification must encourage students to:

● build on their knowledge, understanding and skills established through the computer science elements of the programme of study for

computing at Key Stage 3 and Key Stage 4

● enable students to progress into further learning and/or employment

● understand and apply the fundamental principles and concepts of computer science, including abstraction, decomposition, logic, algorithms,

and data representation

● analyse problems in computational terms through practical experience of solving such problems, including designing, writing and debugging

programs

● think creatively, innovatively, analytically, logically and critically

● understand the components that make up digital systems, and how they communicate with one another and with other systems

● understand the impacts of digital technology to the individual and to wider society

● apply maths skills relevant to computer science.

Assessment objectives

AO1: Demonstrate knowledge and understanding of the key concepts and principles of computer science.

AO2: Apply knowledge and understanding of key concepts and principles of computer science.

AO3: Analyse problems in computational terms: to make reasoned judgements to design, program, evaluate and refine solutions.

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
Year 10

Academic

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2

Topic 3.1 Fundamentals of

algorithms and 3.2

Programming

3.1 Fundamentals of

algorithms and 3.2

Programming

3.1 Fundamentals of

algorithms and 3.2

Programming

3.1 and 3.2

Programming

consolidation

3.1 and 3.2 Programming

consolidation

3.3 Fundamentals of

data representation

Knowledge:

Pupils will

learn how

to:

Specification reference

3.1.1, 3.2.1, 3.2.2, 3.2.3, 3.2.7

Understand and explain the

term algorithm.

Understand and use string,

integer and real data types

appropriately.

Understand how variable

declaration and assignment

can be used in programs.

Use addition, subtraction,

multiplication and real

division.

Output data and information

from a program to a

computer display.

Use meaningful identifier

names and know why it’s

important to use them.

Specification reference

3.2.2, 3.2.4, 3.2.5, 3.2.11

Use selection (if, else, else if,

case/switch if appropriate)

Use a range of relational

operators ie equal to, not

equal to, less than, greater

than, less than or equal to

and greater than or equal

to.it

Use NOT, AND, OR. Using

nested selection structures.

Understand what is meant by

testing and be able to

correct errors in programs

and algorithms.

Specification

reference

3.1.1, 3.1.2, 3.1.3, 3.1.4,

3.2.6

Understand the

concept of data

structures.

Use one-dimensional

arrays (or equivalent)

in the design of

solutions to simple

problems.

Understand that more

than one algorithm

can be used to solve

the same problem.

Compare the

efficiency of

algorithms.

Understand and

explain how linear

and binary search

algorithms work and

compare them.

Understand and

explain how bubble

and merge sort

algorithms work and

compare them.

Use trace tables.

Specification

reference

3.1.1, 3.2.2, 3.2.3,

3.2.10

Specification reference

3.22, 3.2.6

Use two-dimensional arrays

(or equivalent) in the

design of solutions to

simple problems.

Use nested iteration.

Use of constants.

Specification reference

3.2.6, 3.2.1

Use records (or equivalent)

in the design of solutions to

simple problems.

Be able to write simple

authentication routines

Specification reference

3.1.1

Use a systematic approach

to problem solving and

algorithm creation

representing those

algorithms using pseudo-

code, program code and

flowcharts.

Explain simple algorithms in

terms of their inputs,

processing and outputs.

Determine the purpose of

simple algorithms.

Once students have

developed their

programming skills, it’s

important they get the

opportunity to

consolidate them by

working on other

programming

projects. These could

be set by the teacher

for the whole class or

individually chosen to

reflect students’

interests and ability.

While there is no

longer coursework or

non-exam assessment

(NEA) programming

tasks, by working on

larger projects,

students are maturing

and embedding their

programming skills for

Paper 1.

Once students have

developed their

programming skills, it’s

important they get the

opportunity to consolidate

them by working on other

programming projects. These

could be set by the teacher

for the whole class or

individually chosen to reflect

students’ interests and ability.

While there is no longer

coursework or non-exam

assessment (NEA)

programming tasks, by

working on larger projects,

students are maturing and

embedding their

programming skills for Paper

1.

Specification reference

3.3.1, 3.3.2

Understand the

number bases decimal

(base 10) and binary

(base 2).

Understand that

computers use binary

to represent all data

and instructions.

Understand how binary

can be used to

represent whole

numbers and be able

to convert between

binary and decimal

and vice-versa.

Specification reference

3.3.1, 3.3.2

Understand the

number base

hexadecimal (base

16).

Understand how

hexadecimal can be

used to represent

whole numbers and be

able to convert

between decimal and

hexadecimal as well as

binary and

hexadecimal.

Understand why

hexadecimal is often

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
Select suitable test data that

covers normal (typical),

boundary and erroneous

data. Be able to justify the

choice of test data.

Understand pseudo-code

and flowcharts.

Understand that there are

different types of error

including syntax and logical

errors.

Identify and categorise errors

in algorithms and programs.

Specification reference

3.1.1, 3.2.2, 3.2.8, 3.2.9, 3.2.11

Use indefinite iteration with

conditions at start and end of

loop.

Use random number

generation.

Use some string handling

techniques:

● length

● position

● substring

● concatenation

convert character to

character code

convert character code to

character string conversion

operations.

Write simple data validation

routines.

Write simple authentication

routines.

Understand and explain the

term abstraction.

Specification reference

3.2.2

Use definite iteration.

Use nested iteration.

Understand and

explain the term

decomposition

Describe the

structured approach

to programming.

Explain the

advantages of the

structured approach.

Understand the

concept of

subroutines and be

able to use them in

programs, including

the use of local

variables.

Explain the

advantages of using

subroutines in

programs.

Integer division,

including remainders.

Specification

reference

3.2.1, 3.2.8, 3.2.10

Use a structured

approach to

programming, in

particular focussing on

the use of parameters

and return values.

Use a range of string

handling operations

from:

*length

*position

*substring

*concatenation

*convert character to

character code

*convert character

code to character

used in computer

science.

Specification reference

3.3.3

Know the units that are

used to measure

quantities of bytes.

Specification reference

3.3.4

Add together up to

three binary numbers.

Perform logical shifts.

Describe situations

where binary shifts can

be used.

Specification reference

3.3.5

Understand character

sets including ASCII

and Unicode and the

advantages of

Unicode.

Understand that

character codes are

commonly grouped

and run in sequence

within encoding tables.

Specification reference

3.3.6

Understand how

images can be

represented as

bitmaps, including key

terms.

Calculate file sizes.

Convert between

binary and image data

for simple images.

Specification reference

3.3.7

Understand analogue

sound must be

sampled and

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
*string conversion

operations.

Use the char and

Boolean data types.

converted to digital

form for storage and

processing.

Describe how sound is

represented using

sample rate and

sample resolution.

Calculate sound file

sizes.

Specification reference

3.3.8

Explain what data

compression is, why it’s

used and why there

are different methods

used.

Explain how Huffman

coding works and

know how to use a tree

to decompress data

using Huffman coding

and calculate how

many bits are used vs

how many bits are

stored using

uncompressed ASCII

data.

Compress/

decompress data using

RLE.

Skills Specification reference

3.1.1, 3.2.1, 3.2.2, 3.2.3, 3.2.7

Introduce students to basic

input and output commands,

declaring variables (if

required by language), and

using arithmetic operations.

Students will also need to be

taught basic aspects of the

IDE for their programming

language e.g. how to run a

program, how to load/save,

Specification

reference

3.1.1, 3.1.2, 3.1.3, 3.1.4,

3.2.6

Introduce students to

the concept of a one-

dimensional array and

give them the

opportunity to solve

problems using them.

Cover the four

searching and sorting

Specification reference

3.22, 3.2.6

Give students the

opportunity to write

programs using two-

dimensional arrays. They’ll

need to consider/design

how the arrays can be

used to represent the

problem. Data stored in a

two-dimensional array is

usually displayed most

When completing

consolidation tasks,

students need to

develop their own skills

in analysing problems

and designing and

testing their solutions,

as well as coding

them. The more

problems that are

solved the better –

programming the

When completing

consolidation tasks, students

need to develop their own

skills in analysing problems

and designing and testing

their solutions, as well as

coding them. The more

problems that are solved the

better – programming the

solutions to the problems just

allows students to check their

solutions work. The

Specification reference

3.3.1, 3.3.2

Look at how computers

store data

conceptually as

high/low voltage and

on and off states and

how this can be

conceived numerically

as binary (may be

easier to look at early

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
how error messages are

presented and what they

mean.

Introduce students to the

idea of an algorithm and that

a program is an

implementation of an

algorithm.

Exercises could include:

*getting the computer to

display “Hello World”.

*getting the user to type in

their name and outputting

‘Hello’ to them (possibly

concatenating forename

and surname input

separately).

*doing simple calculations,

eg adding three numbers,

multiplying two numbers

together. This could be done

in ‘shell’ mode but will be

better contextualised if made

into the form of a full

program.

*doing more complex

calculations, e.g. area of a

rectangle, area of a triangle,

area of a circle, area of a

trapezium. Students could be

set the task of completing

problems from their maths

classes as programs.

*students converting

between provided code,

pseudocode and flowcharts.

Specification reference

3.2.2, 3.2.4, 3.2.5, 3.2.11

Teach pupils about the use

of selection statements to

determine the path of code

execution. Exercises should

build in difficulty, starting with

algorithms and give

the opportunity to

code them, except

the merge sort. Before

coding these

algorithms, it’d be

helpful for students to

look at them in

pseudo-code and to

trace their execution

in a trace table to

ensure that they

understand how they

function.

It isn’t expected that

concepts such as Big-

O or T(n) are

introduced. However,

counting operations

can help demonstrate

efficiency.

Exercises could

include:

*inputting a list of

names (or other data)

and redisplaying them

*inputting a list of

parcel weights (total

the weights and work

out the average,

lowest and highest

weight)

*searching a

dictionary to check

whether a word is in it

using the linear search

method

*improving the

dictionary program to

use the binary search

method

*using the bubble sort

algorithm to sort data

conveniently using nested

loops.

A range of games can be

readily implemented using

two-dimensional arrays.

If students have not yet

encountered constants,

they could be introduced

here, for example, to store

the size of a game board.

Exercises could include:

● snakes and

ladders

● noughts and

crosses

● battleships.

Python programmers

should use lists rather than

importing Array classes for

simplicity.

Specification reference

3.2.6, 3.2.1

Introduce students to the

concept of records and

why logically grouping

related data together is a

sensible approach.

Exercises could include:

*adapt the dictionary

program that was written

earlier to store equivalent

words in two languages in

an array of records and

perform translation

between them

*write an address book

program, or a program to

keep track of any other

data (this data could be

saved/loaded from a text

file using CSV format)

*adapt the adventure

game from earlier to store

solutions to the

problems just allows

students to check their

solutions work. The

specification requires

that, for Paper 1,

students should have

sufficient practice of:

• structuring

programs into

modular parts with

clear documented

interfaces to enable

them to design

appropriate modular

structures for solutions

• including

authentication and

data validation

systems/routines within

their computer

programs

• writing,

debugging and

testing programs to

enable them to

develop the skills to

articulate how

programs work and

argue using logical

reasoning for the

correctness of

programs in solving

specified problems

• designing

and applying test

data (normal,

boundary and

erroneous) to the

testing of programs so

that they are familiar

with these test data

specification requires that,

for Paper 1, students should

have sufficient practice of:

• structuring

programs into modular parts

with clear documented

interfaces to enable them to

design appropriate modular

structures for solutions

• including

authentication and data

validation systems/routines

within their computer

programs

• writing, debugging

and testing programs to

enable them to develop the

skills to articulate how

programs work and argue

using logical reasoning for

the correctness of programs

in solving specified problems

• designing and

applying test data (normal,

boundary and erroneous) to

the testing of programs so

that they are familiar with

these test data types and the

purpose of testing

• refining programs in

response to testing

outcomes.

Past and sample coursework

assignments set for GCSE

coursework are one source

of ideas for practising and

consolidating programming

tasks, as are the

programming challenges

available on our website.

Able students could also be

given the opportunity to

extend their skills; for

computers with valves,

transistors).

Review how the

decimal system works

with 10 digits and

place values that are

powers of 10 and relate

this to how binary works

with 2 digits and place

values that are powers

of 2.

Show how a binary

number can be

converted to decimal

by adding the place

values of columns with

1s in.

Show how decimal can

be converted to binary

by working from left to

right.

Consider the highest

and lowest decimal

value that can be

stored in 8 bits.

This is a topic that

students must practise,

so they need to

complete conversion

exercises, possibly

some in class and some

for homework.

Specification reference

3.3.1, 3.3.2

Consider why binary is

not easy for humans to

use (eg long strings of

digits, easy to

transpose, hard to

remember).

Explain why

hexadecimal is a good

shorthand for binary (4

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
simple Yes/No answers using

just an If statement then

building in complexity in terms

of the number of possible

outcomes and the

complexity of the criteria

used.

Use pseudocode and

flowcharts to illustrate some

algorithms which students

could then write program

code for.

Whilst completing these

exercises, consider choosing

test data, which is particularly

important in boundary

situations.

Introduce deliberate errors

(a) to introduce students to

syntax errors and (b) to

demonstrate how logical

errors may only be picked up

by thorough testing.

Exercises could include:

*exam mark pass/fail.

*determining if a person is a

child/adult/pensioner based

on their age.

*allocating an exam grade

based on mark ranges.

*identifying the biggest of two

or three numbers.

*identifying if a triangle is

scalene, isosceles or

equilateral.

*classifying the temperature

based on a range eg zero0C

or below = freezing, above

zero0C but 100C or below =

warm.

*Find the error activities.

Specification reference

3.1.1, 3.2.2, 3.2.8, 3.2.9, 3.2.11

(eg names) in an

array

*looking theoretically

at how the merge sort

algorithm would

perform the same sort

(implementing merge

sort is beyond GCSE

but more able

students could

attempt this)

*comparing the

efficiency of the

search and sort

algorithms

*representing a game

of snakes and ladders

using a one-

dimensional array to

indicate the positions

of snakes and ladders.
Specification reference
3.1.1, 3.2.2, 3.2.3,
3.2.10

Teach students about

why, when writing

longer programs, it’s

useful to decompose

them, and the

facilities in their

programming

language to do this.

They should also cover

the difference

between local and

global variables. At

this stage, parameters

and return values can

be ignored

Exercises could

include :

*making a maths

toolkit, with a menu

each room as a record

within an array.

Specification reference

3.1.1

Throughout learning to

program, expose students

to how algorithms can be

expressed using pseudo-

code or flowcharts.

Students need to have

some practice at being

able to understand and

write algorithms using these

methods.

They also need to be able

to use trace tables to

record the values of

variables as an algorithm is

stepped through and to

be able to identify the

purpose of an algorithm by

tracing it. This may include

use of records, string

functions and two-

dimensional arrays.

These skills will be assessed

in the exam. It’s useful to

teach them in parallel with

learning to program

(perhaps as homework

exercises) but it could also

be worth giving students

the opportunity to

consolidate their ability to

apply these skills.

Students should complete

exercises where they have

to read and write

pseudocode and

flowcharts, complete trace

tables and deduce the

purpose of algorithms.

types and the purpose

of testing

• refining

programs in response

to testing outcomes.

Past and sample

coursework

assignments set for

GCSE coursework are

one source of ideas

for practising and

consolidating

programming tasks, as

are the programming

challenges available

on our website.

Able students could

also be given the

opportunity to extend

their skills; for example,

if a student learnt how

to program in console

mode, they could be

given the opportunity

to develop

applications with a

graphical user

interface. Problems

from Paper 1 of the

AQA AS/A-level

exams may also be

used to stretch more

able students.

example, if a student learnt

how to program in console

mode, they could be given

the opportunity to develop

applications with a graphical

user interface. Problems from

Paper 1 of the AQA AS/A-

level exams may also be

used to stretch more able

students.

bits = 1 hex digit) and

look at where hex is

used eg colour codes,

MAC addresses,

memory editors.

Look at methods for

converting between

decimal and

hexadecimal and vice-

versa (remember only

8-bit numbers are

needed).

Look at the quick

method for converting

between binary and

hexadecimal and vice-

versa in groups of 4 bits.

Students need to

complete plenty of

example conversion

exercises in class and

for homework.

It’s worth considering

whether your students

would learn a direct

decimalhexadecimald

ecimal conversion

method or would be

better using binary as

an intermediary.

Specification reference

3.3.3

Explain the names of

the measurements

used for quantities.

Consider a comparison

with measurements for

distance where

different but related

measurements are

used depending on the

magnitude of the

distance being

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
Students need to know about

indefinite iteration and how

to use this in their

programming language. For

students using Python, which

does not have a post-

conditioned loop, you should

teach how to implement

post-conditioned loops as

equivalent pre-conditioned

loops.

Students also need to know

how to express these types of

loop as pseudo-code and

flowcharts.

As students are now starting

to tackle more complex

problems, the concept of

abstraction, i.e. removing

unnecessary details from a

problem, could be

introduced at this point.

Exercises could include:

*performing simple validation

eg that a typed value falls

within a range or that an

entered value cannot be left

blank or is shorter than a

minimum length. This can

include using the LENGTH

string handling technique

*adding up a sequence of

numbers of unknown length

*asking users to enter a

password until the correct

password is entered,

displaying suitable messages

*guessing randomly chosen

number until they guess

correctly, with clues given

about whether guess is too

high/low

that’s used to call

different subroutines

to work out (for

example) the area of

different shapes

*making a program

that’ll allow

conversion of numbers

between different

number bases, with

different functions

being used for

different conversions

eg binary to decimal

*creating an

adventure game with

different

rooms/actions having

different subroutines.

In all subsequent

programs, encourage

students to consider

how the programs

can be decomposed

into subroutines.

Specification

reference

3.2.1, 3.2.8, 3.2.10

Emphasis should be on

passing input to the

functions as

parameters and using

return to pass values

back to the calling

program. Input/output

via the

keyboard/screen

should not happen

within the functions.

Teach students why

this is important, eg in

terms of being able to

develop and test

measured (eg cm, m,

km).

Emphasise that this

specification uses the SI

definitions of the units

which are powers of 10,

but refer to the

historical definitions

using powers of 2,

which students may be

familiar with.

Look at measurements

of sizes of typical things

eg RAM in a computer,

size of a hard disk,

download allowances.

You could set students

some exercises working

out file sizes or

converting between

units.

Give students exercises

for comparing

between prefixes – eg

what is larger, 3,000

Megabytes or 4

Gigabytes?

Specification reference

3.3.4

Show students the

method for completing

binary addition of three

numbers, including

how to deal with

multiple carries.

Then they should

complete some

exercises to practise

this.

Then show students

how a binary shift can

be used to double/

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
*rolling two dice until a

double six is scored, counting

how many goes this takes

*throwing darts and getting a

random score on board

(game starts at a total and

plays with the total

decreased by each dart

thrown until zero is achieved).

Specification reference

3.2.2

Introduce students to the

concept of definite iteration

and a loop counter. Use

pseudocode and flowcharts

to illustrate algorithms.

Exercises could include:

*counting from one to 10

*displaying a times table, or

all times tables

*adding up five numbers

(average the same numbers

and identify the highest and

lowest)

*working out factors of a

number using brute-force

approach

*identifying prime numbers

using brute-force approach.

modules

independently and

reuse code. Returning

tuples (in Python)

should be

discouraged as it can

lead to language-

specific pseudo-code.

Exercises could

include:

*developing a

function that returns

the highest of two

numbers and

adapting this to find

the highest of three

numbers or to perform

other mathematical

operations

*developing a

function that indicates

whether a number is

even or not

*developing a

function that works

out n factorial (n!)

*developing a

function that returns a

string that has been

encrypted using the

Caesar Cipher with a

key selected by the

user and adding a

decryption function

(using string position,

and conversion

between character

codes)

*developing a

function to convert a

string into Morse code

*developing a

function that will return

approximately halve a

number.

Specification reference

3.3.5

Look at the ASCII table.

Complete exercise

converting a message

from binary to

characters and vice-

versa.

Note how similar

characters are in

blocks eg all capital

letters.

Consider limitations of

ASCII (limited number

of characters) and look

at how Unicode solves

these.

This topic could be

linked to programming

through the use of the

programming

language commands

for conversion

between character

codes and characters.

 Specification

reference

3.3.6

Look at bitmap images

using a graphics

package, use zoom to

identify pixels and

colours (possible link to

hex).

Introduce colour depth

by considering how

different patterns of 0s

and 1s could be used

to represent colours. A

colour depth of n bits

allows 2n colours.

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
a true/false value,

indicating if two words

are anagrams of each

other

*developing a

function that, when

sent a number, will

return a true/false

value indicating

whether the number is

a perfect number or

not and using this in a

program to search for

perfect numbers using

brute-force.

In all subsequent

programs, encourage

students to consider

how the programs

can be decomposed

into functions with

interfaces that use

parameters and return

values.

Perform some exercises

where students have to

convert small images

between images and

binary data and vice-

versa.

Explain how to

calculate the size of an

image file and then

students complete

some sample

calculations.

Specification reference

3.3.7

Discuss difference

between analogue

and digital quantities.

Look at how sound can

be represented

electronically as a

waveform – a package

such as Audacity can

be used to allow

students to look at

sounds and record their

own.

Use a graph to show

how the sampling

process works and how

sample quality and size

would be affected by

changing sample rate

and sample resolution.

Perform calculations of

sound file sizes.

Specification reference

3.3.8

Students should carry

out exercises that

involve identifying

analogue and digital

quantities, converting

between an analogue

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
waveform and digital

samples and

calculating sound file

sizes.

Students could try

creating ZIP files or

comparing the size of

JPEG (compressed)

and Bitmap files of the

same image to see the

effect of compression.

In discussion, consider

why compression is

useful – either in the

context of transmission

or storage of data eg

faster downloads, more

photos on memory

cards etc.

RLE is the simplest of

the two techniques so

it’s best to cover this

first. Look at how it can

be used with small

images and get

students to try

compressing small

bitmaps using it.

Consider why it isn’t

suitable for some

images and many

types of data.

Look at Huffman

coding and the

concept of variable-

length codes with more

common characters

having shorter codes.

Students should try

using a Huffman tree to

decode some text

stored as binary data.

At this point, a

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
calculation of how

much memory was

saved compared to

using 7-bit ASCII can be

made.

Students don’t need to

be able to build a

Huffman coding tree

although doing so can

aid understanding.

Students need to

complete practice

exercises compressing

and decompressing

data using both RLE

and Huffman coding

and calculating how

much memory is saved

when Huffman coding

is used.

There are lots of videos

available illustrating

these techniques.

Vocabulary All vocabulary needed for GCSE computer science can be found in this document - pupils should be familiar with all of these vocabulary terms:

Subject Specific Vocabulary.PDF

https://drive.google.com/file/d/16rXMebsE3hhbK5YUYLxwiohC9xkAVAsQ/view?usp=drive_link

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science

Year 11

Academic

Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2

Topic

3.4 Computer systems

3.5 Fundamentals of computer

networks and 3.6 Cyber

security

3.7 Relational

databases and

structured query

language

3.8 Ethical, legal and

environmental impacts

including privacy

Assessment and exam

preparation

Assessment and exam

preparation

Knowledge Specification reference

3.4.1, 3.4.3

Define the terms hardware and

software and understand the

relationship between them.

Explain what’s meant by system

software and application

software and be able to give

examples of them.

Understand the need for and

functions of the OS and utility

programs.

Specification reference

3.4.2

Construct truth tables for NOT,

AND, OR, XOR gates,

Construct truth tables for simple

logic circuits and interpret them.

Create, modify and interpret

simple logic circuit diagrams.

Create and interpret simple

Boolean expressions made up of

NOT, AND, OR and XOR

operations.

Convert between Boolean

expression and logic circuits.

Specification reference

3.4.4

Specification reference

3.5

Define what a computer

network is.

Discuss the benefits and risks of

computer networks.

Understand that networks can

be wired or wireless.

Discuss the benefits and risks of

wireless networks as opposed

to wired networks.

Specification reference

3.5

Describe the LAN, WAN and

PAN types of computer

network.

Explain the star and bus

physical network topologies.

Specification reference

3.5

Define the term ‘network

protocol’.

Explain the purpose and use of

common network protocols

including: Ethernet, Wi-Fi, TCP,

UDP, IP, HTTP, HTTPS, FTP, SMTP,

IMAP.

Specification reference

3.5

Specification

reference

3.7.1

Explain the concept

of a database.

Explain the concept

of a relational

database.

Understand the

following database

concepts:

o table

o record

o field

o primary key

o foreign key.

Understand that the

use of a relational

database facilitates

the elimination of

data inconsistency

and data

redundancy.

Specification

reference

3.7.2

Be able to use SQL to

retrieve data from a

relational database,

using the commands:

This section of the

specification is well suited to

class discussions, debates

with students taking opposing

sides of an issue and students

completing individual

research and perhaps

making presentations. Exam

questions on this section will

be drawn from the following

areas:

● cyber security

● mobile technologies

● wireless networking

● cloud storage

● hacking

(unauthorised

access to a

computer system)

● wearable

technologies

● computer based

implants

● Autonomous

vehicles.

Throughout this section,

students should be referred

back to the need to consider

these examples in the

context of their ethical, legal

It’s important that

students are formally

assessed on both their

programming skills and

their theoretical

knowledge.

Identified weaknesses

will be retaught and

tricky areas revised.

It’s important that

students are formally

assessed on both their

programming skills and

their theoretical

knowledge.

Identified weaknesses

will be retaught and

tricky areas revised.

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
Know and explain the

differences between low-level

and high-level languages.

Explain the differences between

low-level languages (assembly

language and machine code).

Understand the need to translate

high-level or assembly

languages.

Understand that machine code

is expressed in binary and is

specific to a processor or family

of processors.

Understand the advantages/

disadvantages of low-level vs

high-level language

programming.

Understand and explain the

differences between, and times

to use, interpreters, compilers

and assemblers.

Specification reference

3.4.5

Explain role of main memory,

components of CPU, within the

Von Neumann architecture:

o arithmetic logic unit

o control unit

o clock

o register

o bus.

Explain the effect of clock

speed, number of cores and

cache size on performance of

the CPU.

Understand and explain the

fetch-execute cycle.

Specification reference

3.4.5

Understand the difference

between main memory and

secondary storage and between

RAM, ROM, cache and a

Understand the need for, and

importance of, network

security.

Explain the following methods

of network security:

authentication, encryption,

firewall, MAC address filtering.

Specification reference

3.5

Describe the 4 layer TCP/IP

model.

Understand that the HTTP,

HTTPS, SMTP, IMAP and FTP

protocols operate at the

application layer.

Understand that the TCP and

UDP protocols operate at the

transport layer.

Understand that the IP

protocol operates at the

network layer.

Specification reference

3.6.1, 3.6.2

Define the term cyber security

and be able to describe the

main purposes of cyber

security.

Understand and be able to

explain the following cyber

security threats:

*social engineering techniques

*malicious code

*weak and default passwords

*pharming

*misconfigured access rights

*removable media

*unpatched and/or outdated

software.

Explain what penetration

testing is and what it is used

for.

Specification reference

3.6.2.1

*SELECT

*FROM

*WHERE

*ORDER BY..ASC |

DESC

Be able to use SQL to

insert data into a

relational database

using the command:

*INSERT INTO

table_name

(column1, column2

…) VALUES (value1,

value2, …)

Be able to use SQL to

edit and delete data

in a database using

the commands:

*UPDATE table_name

SET column1 =

value1, column2 =

value2 … WHERE

condition

DELETE FROM

table_name WHERE

condition.

and environmental impact

on society (not all of these

are relevant to each

example).

Specification reference

3.8

Explain the current ethical,

legal and environmental

impacts and risks of digital

technology on society.

Where data privacy issues

arise, these should be

considered.

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
register, what they’re used for

and why they’re required.

Be aware of why secondary

storage is needed and the

different types of secondary

storage.

Explain the operation of solid

state, optical and magnetic

storage.

Discuss their relative advantages.

Explain what cloud storage is

and compare it to local storage.

Specification reference

3.4.4

Understand the term

‘embedded system’ and explain

how an embedded system

differs from a non-embedded

system.

Describe what social

engineering is.

Explain the following forms of

social engineering: blagging,

phishing, shouldering

Describe how social

engineering can be protected

against.

Specification reference

3.6.2.2

Define the term malware.

Describe how malware can be

protected against.

Describe the following forms of

malware: computer virus,

Trojan, spyware.

Specification reference

3.6.3

Understand and be able to

explain the following security

measures biometric measures:

*password systems

*CAPTCHA

*using email confirmations

*automatic software updates.

Skills Specification reference

3.4.1, 3.4.3

This is very much a theory topic

so is probably best delivered by

the teacher talking and

discussing with the class.

For the first point, students simply

need to know that hardware is

the electronic or electro-

mechanical components of the

computer and that software are

the programs that run on the

hardware and tell it what to do

to perform a task.

Students need to know that

application software completes

Specification reference

3.5

Students will have direct

experience of using networks,

both wired and wireless, so this

makes a good discussion

topic: pros and cons of having

a network and also of wired vs

wireless networks.

Devices such as Raspberry Pis

could be used to build a

network if it’s desired that

students have some practical

experience.

Specification reference

3.5

Specification

reference

3.7.1

This is a primarily

theoretical section.

However, the

teacher could

demonstrate the

concepts by logging

into an online SQL

database.

Data

consistency/redunda

ncy can be modelled

on a student

database and

Specification reference

3.8

Students should be aware of

applications and concepts of

the technologies identified.

Students could research

applications and risks and

put together presentations

either individually or with

students contributing towards

a group presentation.

Students should be made

aware of ethical, legal and

environmental impacts and

what these mean.

Completing

programming tasks

under timed conditions

and without teacher

assistance will help to

identify students who

are finding the work

challenging and

prepare targeted

revision lessons.

They should also be

explicitly taught exam

techniques and literacy

skills.

Completing

programming tasks

under timed conditions

and without teacher

assistance will help to

identify students who are

finding the work

challenging and prepare

targeted revision lessons.

They should also be

explicitly taught exam

techniques and literacy

skills.

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
user-oriented tasks that the user

would need to do with or without

a computer whereas system

software performs tasks related

to the management of the

computer system.

Students need to

know/understand that the OS

manages processor(s), memory,

I/O devices, applications and

security but don’t need to know

how.

A utility is a program that helps

manage a computer but isn’t

core to its operation eg a

compression program, a virus-

checker. It might be useful to

make students aware that

utilities are increasingly being

bundled with the OS.

More able students might enjoy

researching machines such as

the PDP/8 which didn’t have an

OS and consider how such

machines worked.

Practice tasks arranging software

into categories can be useful.

Specification reference

3.4.2

Consider the basic operations of

AND, OR, XOR and NOT

(students may have already

come across these in the

context of programming or

databases depending on the

order in which the sections are

taught).

Look at truth tables for each

gate.

Draw a logic circuit and then

build a truth table for it.

Differences between LAN and

WAN should be considered in

terms of size, ownership and

the hardware used.

Topologies are best visualised;

it’s worth noting that physical

bus networks have limited

applications nowadays.

This topic can be taught as a

discussion or there are many

online videos and resources.

Students can build a bus and

a star network out of string and

coat hangers and

demonstrate problems by

cutting connections.

Specification reference

3.5

This topic is very theoretical

and is probably best taught

with students reading notes or

the teacher delivering a

presentation. Students should

then answer questions that test

their understanding. It’s

possible to demonstrate the

use of some of the protocols,

for example by using Telnet to

open connections to a web

server or email server, but this

isn’t required for GCSE.

Students could carry out short

research tasks to identify core

reasons of the protocols.

Specification reference

3.5

This topic can be taught

theoretically or, if the teacher

has access to this, students

could be shown how some of

these measures are used in

school, eg firewall rules used.

having a student

“move to a new

house”, having

parents marry, and so

on.

Specification

reference

3.7.2

This should be a

practical activity with

students given

access to a real SQL

database. There are

online sites available

or the teacher may

set up a short-term

hosted SQL server for

the period of

teaching this topic.

Microsoft Access is

unlikely to be suitable

for teaching this

topic.

Students should be

given the opportunity

to run live SQL

commands on a

variety of sample

data. Previous

specification

examinations and

those from AQA

AS/A-level papers

may form suitable

starting points for

data sets and

problems to explore.

Students should have

practice writing and feeding

back on written arguments

for and against each of the

topics identified in relation to

their ethical, legal and

environmental impacts as

well as their privacy

considerations.

Resource:

There are many videos on

hacking on YouTube, for

example:

 5 most dangerous hackers of

all time

10 biggest computer hacks

of all time

Resources from the UK

government

 Article on risks of wireless

networks

Video on mobile technology

 Examples of implants

 Downloading into brains

(video)

 TED talks on wearable

technologies

Study and revision skills

will be explicitly taught.

Study and revision skills

will be explicitly taught.

https://www.youtube.com/watch?v=7UaPL5PGywo
https://www.youtube.com/watch?v=7UaPL5PGywo
https://www.youtube.com/watch?v=7UaPL5PGywo
https://www.youtube.com/watch?v=oOoMqgnvZaY
https://www.youtube.com/watch?v=oOoMqgnvZaY
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/410221/bis-15-77-Guide-to-cyber-security-schools-programmes-and-resources.pdf
http://www.gov.uk/government/uploads/system/uploads/attachment_data/file/410221/bis-15-77-Guide-to-cyber-security-schools-programmes-and-resources.pdf
http://ccm.net/contents/805-risks-related-to-wireless-wifi-networks-802-11-or-wi-fi
http://ccm.net/contents/805-risks-related-to-wireless-wifi-networks-802-11-or-wi-fi
http://ccm.net/contents/805-risks-related-to-wireless-wifi-networks-802-11-or-wi-fi
https://www.youtube.com/watch?v=cl7ccx8oBfw
https://www.makeuseof.com/tag/plugging-brain-body-future-implanted-computers/
https://www.makeuseof.com/tag/plugging-brain-body-future-implanted-computers/
https://www.youtube.com/watch?v=P674CG9mOTs
https://www.youtube.com/watch?v=P674CG9mOTs
https://www.youtube.com/watch?v=P674CG9mOTs
https://www.youtube.com/watch?v=u8tnYt30L-A
https://www.youtube.com/watch?v=u8tnYt30L-A
https://www.youtube.com/watch?v=u8tnYt30L-A

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
Students should then try some

exercises completing truth tables

for different logic circuits.

Introduce the idea of drawing a

logic circuit to represent a

specific problem. Students

should then try to draw logic

circuits for a few problems. This

could be done on paper, using

an online logic circuit simulator

or physically using electronics or

tools such as logic goats.

It isn’t required for the

specification but it’d be useful to

link this in to hardware and the

design of the processor by

explaining how gates can be

combined to make a processor

or memory. XOR can be

demonstrated using a mask to

change between upper- and

lower-case ASCII.

Specification reference

3.4.4

This is a largely theoretical lesson

which is most likely to be

teacher-led.

Students could research the

subject matter and produce

comparison charts.

Mini case studies could be used

to identify the most appropriate

solutions and to engender

discussion.

Specification reference

3.4.5

A good way to introduce this is

to have old PCs that students

can look inside of to identify the

component parts. This could be

done with photographs but

having real PCs makes it more

interesting.

Roleplay can also be a useful

tool with some students

playing data packets and

some students playing the

security tool.

Specification reference

3.5

This topic is fairly theoretical.

Students could use textbooks,

online notes or videos to learn

from.

They need to understand why

a stack is used (abstraction),

what the four layers are and

some functions of each layer

of the stack and at which

layers the listed protocols work.

Specification reference

3.6.1, 3.6.2

This topic works well as a class

discussion as most students will

be familiar with some of these

topics from their own personal

experiences.

Students could make a

presentation, each focusing

on one or more topics.

Specification reference

3.6.2.1

This is an excellent opportunity

for students to discuss personal

experiences. Teachers may

have examples of phishing

attempts. The lesson could be

started as simply as asking

every student to write down

their password and give it to

their friend. The responses of

the students, whether they

comply or argue the point,

can spark an interesting

debate about personal

security and what “social

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
The role of the components

needs to be explained.

Students only need a high-level

understanding of the fetch-

execute cycle. They don’t need

to know the details of register

operations etc.

A range of online simulators can

be used to illustrate this.

Specification reference

3.4.5

This isn’t a very practical topic.

Most of the content is probably

best explained to the students

by the teacher, although

students could be asked to

research parts of it eg what

cache is and how it improves

performance.

With regard to RAM and ROM,

it’s helpful to focus on their uses.

It’s useful to have physical

devices for students to look at

here – a disassembled hard disk

drive and CD-ROM drive or

similar. There’s less of interest that

can be seen inside a solid state

drive.

There are also lots of animations

available on the Internet on

websites such as

howstuffworks.com, which

illustrate the principles behind

the operation of these devices.

Students could make a

presentation to explain how

each device works.

The relative advantages of the

devices should be considered in

relation to criteria such as

maximum capacity, cost per

megabyte, robustness, power

consumption and portability.

engineering” can mean on a

personal level. Ask any

students who did write their

passwords down to change

them.

Specification reference

3.6.2.2

This topic works well as a

discussion, as students will be

aware of some of these topics

from their own experiences.

They may need to be focused

somewhat to ensure that they

cover all of the topics on the

specification.

A range of useful online videos

are available.

Specification reference

3.6.3

Most of these methods should

be demonstrable within the

classroom. Students should be

encouraged to discuss the

advantages and

disadvantages of each and

identify where and when each

might be most appropriate.

Key Stage 4 Academic Computing Curriculum

AQA GCSE Computer Science
Many students will be familiar

with using cloud storage such as

OneDrive or Apple or Google’s

cloud storage systems, so this

aspect of the specification

would work well as a discussion

with students explaining what

they use it for and considering

the practical benefits they’ve

seen themselves but also the

risks.

Specification reference

3.4.4

This is a relatively small topic.

Students need to understand

that many computer systems are

embedded in other devices and

the constraints and differences

that this produces when

compared with non-embedded

systems.

Give students some scenarios

(eg washing machine) and ask

them to consider what

functionality the system would

need and why a non-

embedded system wouldn’t be

suitable.

Differences such as processor

speed, amount and type of

main memory, secondary

storage, input and output

devices and upgradeability

could be considered.

More able students could

investigate the part embedded

systems play within the Internet

of Things.

Vocabulary All vocabulary needed for GCSE computer science can be found in this document - pupils should be familiar with all of these vocabulary terms:

Subject Specific Vocabulary.PDF

https://drive.google.com/file/d/16rXMebsE3hhbK5YUYLxwiohC9xkAVAsQ/view?usp=drive_link

